SLR-BP - 468 | Seat | | |------|--| | No. | | #### M.Sc. (Part – I) (Semester – I) Examination, 2015 STATISTICS (Paper – II) Real Analysis (New) Day and Date: Friday, 17-4-2015 Total Marks: 70 Time: 11.00 a.m. to 2.00 p.m. **Instructions**: 1) Attempt **five** questions. - 2) Q. No. 1 and Q. No. 2 are compulsory. - 3) Attempt any three from Q. No. 3 to Q. No. 7. - 4) Figures to the right indicate full marks. - 1. A) Choose the correct alternative. - A set may have - a) No limit point - b) A unique limit point - c) Finite or infinite number of limit points - d) All the above - 2) The limit points of $S_n = 1 + (-1)^n$ are - a) 1, 0 b) 0, 2 c) 1, 1 d) 2, 1 - 3) The function $f(x) = x^2$ is - a) Continuous b) Discontinuous c) Uniformly continuous d) None of these - 4) The improper integral $\int_{-\infty}^{\infty} e^{x} dx =$ - a) 0 b) 1 c) π - **d**) ∞ - 5) The function f is bounded and integrable on [a, b] then f is - a) Continuous on [a, b] b) Differentiable on [a, b] c) Both a) and b) d) Neither a) nor b) | B) | Fill | in | the | h | lanks | : | |----|------------|-----|------|--------------|---------|---| | u, | <i>,</i> ı | 111 | เมเษ | \mathbf{v} | iai inc | , | 5 - 1) A set of all limit points of a set is called _____ set. - 2) A set is closed if and only if its complement is ______ - 3) Every convergent bounded sequence has _____ limit. - If a power series converges for all values of x, then it is called ______ convergent. - 5) The radius of convergence of series $1 + 2x + 3x^2 + 4x^3 + ...$ is _____ #### C) State whether the following statements are **true** or **false**: 4 - 1) The limit point of a set is always a member of that set. - 2) A sequence cannot converge to more than one limit points. - 3) Every power series is convergent for x = 0. - 4) The function $f(x) = \frac{1}{2}$ is uniformly convergent on (0, 1]. - 2. a) State the following: 6 - i) Taylor's theorem - ii) Heine-Borel theorem - iii) Bolzano-Weierstrass theorem. - b) Write short notes on the following: 8 - i) Countable and uncountable sets. - ii) Radius of convergence. - 3. a) Define open set. Give an example of an open set and other one which is not open set with justifications. - b) Prove that finite intersection of open sets is an open set. - c) Show that the set of real numbers in [0, 1] is uncountable. (5+5+4) - 4. a) Define Cauchy sequence. Prove that every Cauchy sequence is convergent. - b) Examine the convergence of following sequence. i) $$S_n = \frac{1}{1!} + \frac{1}{2!} + ... + \frac{1}{n!}, \forall n \in \mathbb{N}$$ ii) $$S_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}, \ \forall n \in \mathbb{N}$$ (6+8) - 5. a) Describe any four tests for convergence of series. - b) Show that the series $X + \frac{X^2}{2^l} + \frac{X^3}{3^l} + \dots$ converges absolutely for all values of x. - c) Show that for any fixed value of x, $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ is convergent. (8+3+3) - 6. a) Define Riemann integral. Prove that every continuous function is integrable. - b) Find the radius of convergence of the following series. i) $$1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \dots$$ ii) $$\times + \frac{\chi^2}{2!} + \frac{\chi^3}{3!} + \dots$$ (8+6) - 7. a) Find the minimum value of $x^2 + y^2 + z^2$ when x + y + z = 3a. - b) Show that the function $f(x) = x^2$ is uniformly continuous on [-1, 1]. c) Test the convergence of $$\int_0^1 \frac{dx}{\sqrt{1-x^3}}$$. (6+4+4) | Seat | | |------|--| | No. | | A) 1 B) 2 # M.Sc. (Part – I) (Semester – I) Examination, 2015 | | STATISTICS (
Linear Algeb | · • | | |--|------------------------------|----------------------------|------------------| | Day and Date : Monday, 20-4-2 | 2015 | | Max. Marks : 70 | | Time: 11.00 a.m. to 2.00 p.m. | | | | | Instructions: 1) Attempt | t five questions. | | | | 2) Q.No. 1 | and Q. No. 2 ar | re compulsory . | | | 3) Attemp | t any three fron | n Q. No. 3 to Q. No | o. 7 . | | 4) Figures | to the right ind | licate full marks. | | | 1. A) Select correct alternati | ve: | | | | i) The rank of $A = \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}$ | 0 0
3 6
2 4 | | | | A) 1 | B) 2 | C) 3 | D) None of these | | ii) The characteristic o | of a real symmet | tric orthogonal ma | trix are | | A) 0 and 1 | | B) -1 and 1 | | | C) -1 and 0 | | D) None of these | | | iii) The quadratic form | $X_1^2 - X_2^2$ is | | | | A) Positive definite | e | B) Negative defir | nite | | C) Indefinite | | D) None of these | | | iv) A square matrix A i | s called skew-s | ymmetric matrix if | | | $A) A = A^{T}$ | B) $A = A^{-1}$ | C) $A = A^T A$ | D) $A = -A^T$ | | v) Let $\bigvee = \{X, X, X \mid X\}$ | $\in R \}$ be a vecto | r space then dime | nsion of V is | C) 3 D) None of the above - B) Fill in the blanks: - I) If $A_{n \times n}$ is a non-singular matrix, then rank (A) = _____ - II) The system of equation: 2x + 2y = 6, 3x y = 5, 2x + y = 5 has _____ solution. - III) If the trace and determinant of a 2×2 matrix are 10 and 16, then the largest characteristic root is _____ - IV) The matrix A of the quadratic form $\chi_1^2 + X_2X_3$ is _____ - V) The trace of a matrix is _____ of diagonal elements of a matrix. - C) State whether the following statements are True or False: - I) If A is a positive semidefinite matrix then |A| is zero. - II) Let $A = [1, 2, 3]^T$ then $G = [1 \ 0 \ 0]$ is a g-inverse of A. - III) Moore-Penrose inverse is not unique. - IV) The symmetric matrix A of the quadratic form $(X_1 X_2)^2$ is $A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$. - 2. a) Answer the following: (5+5+4) - I) Discuss classification of quadratic form. - II) Define Moore-Penrose inverse and state its properties. - b) Write short notes on the following: - I) Choleskey decomposition. - II) Vector space and subspace. (6+8) - 3. a) Explain linearly independent set of vectors. Let X and Y be n-component linearly independent vectors. Show that $X + \alpha Y$ and $X + \beta Y$ are also linearly independent if $\alpha \neq \beta \neq 0$. - b) Describe Gram-Schmidt orthogonalization process using this construct an orthonormal basis for the vector space spanned \mathbf{a}_1 and \mathbf{a}_2 as given below $$a_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$ and $a_2 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$. (7+7) - 4. a) Explain the following terms with one illustration: - I) Trace of a matrix - II) Inverse of a matrix - III) Kronekar product. - b) Define rank of a matrix. Show that rank (AB) \leq min {rank (A), rank (B)}. (6+8) - 5. a) Define homogenous system of equations. Explain trival and non-trivial solution for the same system. Also, prove that there are n r linearly independent solutions to this system, where rank (A) = r. - b) Define g-inverse of a matrix. Find the g-inverse of $\begin{bmatrix} 2 & 1 & 3 \\ 4 & 2 & 6 \end{bmatrix}$ and verify the same. (7+7) - 6. a) Define characteristic roots and vectors of a matrix. If λ be a characteristic root of matrix A prove that - I) $\frac{1}{\lambda}$ is the characteristic root of A⁻¹ - II) λ^{K} is the characteristic roots of A^{K} . - b) Derive the spectral decomposition of a real symmetric matrix. Obtain for the same $$\begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$. (7+7) 7. a) Show that necessary and sufficient condition for a real quadratic form X^TAX to be positive definite is that $gi \ge 0$ for i = 1,2---n, where $$gi = \begin{vmatrix} a_{11} & a_{12} - - - & a_{1i} \\ a_{21} & a_{22} - - - & a_{2i} \\ a_{i1} & a_{i2} - - - & a_{ii} \end{vmatrix}$$ b) Reduce the quadratic form $2x_1^2 + x_2^2 - 3x_3^2 - 8x_2x_3 - 4x_1x_3 + 12x_1x_2$ to a canonical form. (8+6) _____ | Seat | | |------|--| | No. | | # M.Sc. (Part - I) (Semester - I) Examination, 2015 STATISTICS (Paper - IV) Distribution Theory (New) | | • | | icory (New) | | |------------|---|---|---|-------------------------------------| | Day and D | ate : Wednesday, 2 | 22-4-2015 | | Total Marks : 70 | | Time: 11.0 | 00 a.m. to 2.00 p.m | 1. | | | | Instru | 3) Atten | o. (1) and Q. No. (
npt any three from | s.
(2) are compulsor y
m Q. No. (3) to Q. N
dicate full marks. | | | 1. A) Ch | oose the correct al | ternative : | | 5 | | | • = | • • | omial random varia | ate then | | | $Cov(X_i, X_j), i = j =$ | | | • | | | | • | c) -np _i p _j | d) n² p _i p _j | | 2) | If X is standard no | | | | | | a) 0 | b) 0.5 | c) 0.75 | d) 1 | | 3) | Suppose X is Pois distribution of Y is | sson (λ) random | variate and we de | fine Y = 2 X. Then | | | a) Poisson (λ) | | b) Poisson (2 χ) | | | | c) Poisson $\left(\frac{\lambda}{2}\right)$ | | d) Not Poisson | | | 4) | Suppose X is U(0 distribution. |), 1) random vari | able then $Y = -10$ | og X has | | | a) uniform | b) exponential | c) normal | d) none of these | | 5) | Which of the follow | ving is not a scale | e family ? | | | | a) U(0, θ) | | b) U(0, 1) | | | | c) N(0, σ ²) | | d) Exp (θ) | | #### B) Fill in the blanks: 5 - 1) The moment generating function of N(0, σ^2) random variable is ______ - 2) Probability generating function of B(n, p) random variable is _____ - 3) Let $X_1, X_2, \dots X_n$ are i.i.d. N(0, 1) random variables. The distribution of $\sum_{i=1}^{n} X_i^2 \text{ is } \underline{\hspace{1cm}}$ - 4) Let X is uniformly distributed over (0, 1) then distribution of 1-X is _____ - 5) Let $X_1, X_2, \ldots X_n$ are i.i.d. $N(0, \sigma^2)$ random variables and \overline{X} is sample mean. Then distribution of \overline{X} is - C) State whether the following statements are True or False. 4 - 1) For r = 2, Markov inequality reduces to Liapounov
inequality. - 2) If X is symmetric about α then $(X \alpha)$ is symmetric about zero. - 3) If X > 0 then $E[\log X] \ge \log E[X]$. - 4) If F(x) is distribution function then $[F(x)]^2$ is also a distribution function. - 2. a) Answer the following: 6 - i) Define scale family. Illustrate it with one example. - ii) Let X has N(0, 1) distribution. Find the distribution of $F_x(x)$. - b) Write short notes on the following: - i) Bivariate exponential distribution. - ii) Non-central chi-square distribution. - 3. a) Using Jensen's inequality derive the relationship between A. M., G. M. and H. M. - b) Decompose the following distribution function into discrete and continuous components. $$F(x) = \begin{cases} 0, & x < 0 \\ \frac{x+1}{4}, & 0 \le x < 1 \\ \frac{2+x}{4}, & 1 \le x \le 2 \\ 1, & x > 2 \end{cases}$$ (7+7) - 4. a) State and prove Holder's inequality. - b) Define power series distribution. Show that Geometric distribution is power series distribution. Obtain m.g.f. of geometric distribution using m.g.f. of power series distribution. (7+7) - 5. a) Define distribution function of bivariate random variate (X, Y). State and prove its important properties. - b) Let X and Y be independent random variables each with densities $$f_X(X) = \frac{1}{\pi} \frac{1}{\sqrt{1-\chi^2}}, \mid x \mid < 1 \text{ and } f_y(y) = \frac{y}{\sigma^2} e^{-\frac{y^2}{2\sigma^2}}. \text{ Show that } Z = X \text{ Y is N(0, } \sigma^2).$$ (7+7) - 6. a) Define order statistics. Derive the joint distribution of rth and sth order statistics. - b) Obtain the probability generating function of the negative binomial distribution and hence find its mean. (7+7) - 7. a) Define truncated normal distribution truncated below a. Obtain its mean. - b) If X and Y are jointly distributed with probability density function (p.d.f.) $$f(x, y) = 24 xy, x \ge 0, y \ge 0 \text{ and } x + y \le 1.$$ Find: - i) Marginal distributions of X and Y. - ii) Conditional distribution of Y given X = x. iii) $$E(Y/X = x)$$. (7+7) | Seat | | |------|--| | No. | | # M.Sc. (Part - I) (Sem. - I) Examination, 2015 | • | TATISTICS (Pa
Linear A | | , 2013 | |---|---|---|--| | Day and Date : Monday, 20-4 | 1-2015 | | Max. Marks : 70 | | Time:11.00 a.m. to 2.00 p.m | 1. | | | | iii) Atte | No. (1) and Q.No.
empt any three q | (2) compulsory. | No. 3 to Q. No. 7 . | | 1. A) Select the correct alto | ernative : | | | | i) If <u>X</u> and <u>Y</u> are line
dependent if | early independen | t, then $\underline{X} + \alpha \underline{Y}$ an | d $\underline{X} + \beta \underline{Y}$ are linearly | | A) $\alpha = \beta$ | B) $\alpha < \beta$ | C) $\alpha > \beta$ | D) $\alpha \neq \beta$ | | ii) The characteristic | roots of a real sy | ymmetric orthogo | nal matrix are | | A) 0 or 1 | B) -1 or 1 | C) 0 or -1 | D) None of these | | iii) The rank of $A = \begin{bmatrix} A & A \\ A & A \end{bmatrix}$ | 4 0 0
6 6 12 is
4 4 8 | | | | A) 2 | B) 1 | C) 3 | D) None of these | | iv) Let A be an idemp | ootent matrix. The | en the value of ma
X | $\frac{X'}{X'}$ is | | A) 0 | | B) 1 | | | C) Cannot be dete | ermined | D) None of these | Э | | v) The determinant then characteristic | | 2 matrix A are 12 | 2 and 8 respectively, | | A) 2 and 6 | B) 3 and 4 | C) 12 and 1 | D) 8 and 1 | #### B) Fill in the blanks: - i) If λ is characteristic root of A, then the characteristic root of (A + I) is _____ - ii) The dimension of the vector space $V = \{(x, y, x + 2y) \le x, y \in R\}$ is _____ - iii) The rank of a K × K orthogonal matrix is _____ - iv) The quadratic form $x_1^2 + x_2^2$ is _____ definite. - v) The system of equations 2x + 2y = 6, x y = 1, 4x + 2y = 10 has _____ solution. #### C) State true or false: - i) Moore Penrose (M P) inverse is not unique. - ii) A matrix $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ is positive semidefinite matrix. - iii) P is an idempotent matrix if $P = P^2$. - iv) The g-inverse of (1, 1, 1) is $(1, 1, 1)^T$. (5+5+4) - 2. a) i) Define inverse of matrix. Find the inverse of matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. - ii) Obtain g-inverse of $\begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 2 \\ 2 & 0 & 4 \end{bmatrix}$. - b) Write short notes on the following: - i) Row and column space of a matrix. - ii) Classification of a quadratic form. (6+8) - 3. a) Define and illustrate giving one example each (i) Vector space (ii) Canonical form of a quadratic form. - b) Describe Gram-Schmidt orthogonalization process. Using this method obtain an orthogonal basis for R^2 starting with vector $a_1 = (2, 4)$ and $a_2 = (2, 8)$. (7+7) - 4. a) Define rank of a matrix. Prove that rank (AB) \leq min {rank (A), rank (B)}. - b) Let X and Y be $\[\gamma \]$ -component linearly independent vectors. Show that X + $\[\alpha \]$ Y and X + $\[\beta \]$ Y are also linearly independent if $\[\alpha \neq \beta \]$. (7+7) - 5. a) Define (i) trace of a matrix (ii) symmetric matrix (iii) skew-symmetric matrix. Give an example each. - b) Let A and B be two square matrices. Then prove or disprove AB and BA have the same characteristic roots. (7+7) - 6. a) State and prove a necessary and sufficient condition for a system of linear equations AX = b to be consistent. - b) Examine for the definiteness of the quadratic form (i) $4x_1^2 4x_1x_2 + x_2^2 + x_3^2$ (ii) $$\sum_{i=1}^{n} x_i^2$$. (7+7) - 7. a) Explain the spectral decomposition of a symmetric matrix. Give an illustration. - b) Prove that a necessary and sufficient condition for a quadratic form $\chi' A \chi$ to be positive definite is that $$\begin{vmatrix} a_{11-\cdots} & a_{1i} \\ \vdots \\ a_{i1-\cdots} & a_{ii} \end{vmatrix} > 0$$ for $i = 1, 2, \ldots$ n. (7+7) _____ Seat No. # M.Sc. (Part – I) (Semester – I) Examination, 2015 STATISTICS (Paper – IV)(Old) **Distribution Theory** Total Marks: 70 Day and Date: Wednesday, 22-4-2015 Time: 11.00 a.m. to 2.00 p.m. **Instructions**: 1) Attempt **Five** questions. - 2) Q. No. (1) and Q. No. (2) are Compulsory. - 3) Attempt any three from Q. No. (3) to Q. No. (7). - 4) Figures to the **right** indicate **full** marks. - 1. A) Choose the correct alternative: 1) Which of the following distribution is not a member of scale family? - a) $U(0, \theta), \theta > 0$ - b) U (0, 1) c) N(0, σ^2) - d) Exponential with mean θ - 2) The probability density function of a random variable X is symmetric about zero. The value of distribution function F(x) at x = -1 is - a) 1 F(1) b) $F(1) - \frac{1}{2}$ c) $F(1) + \frac{1}{2}$ d) F(-1) - 3) If X > 0 then - a) $E[\log X] = \log[E(X)]$ b) $E[\log X] \ge \log[E(X)]$ - c) $E [\log X] \le \log [E(X)]$ d) None of these - 4) Let X be a random variable with probability generating function P_x (S). The probability generating function of 2 X will be - a) P_{x} (2 S) b) P_{x} (S/2) c) $P_{x}(S+2)$ d) P_x (S²) 5) Let X be a r.v. with p.d.f. $f(x) = \frac{1}{\sqrt{\pi}} \exp \left\{ -\frac{1}{\sqrt{2}} x^2 \right\}, x \in \mathbb{R}$. The mean and standard deviation of X are a) 1 and 1 b) 0 and 1 c) 0 and $\frac{1}{\sqrt{2}}$ d) 1 and $\frac{1}{\sqrt{2}}$ B) Fill in the blanks: 1) If x is continuous random variable with distribution function F (x) then F (x) has _____ distribution. 2) Probability generating function of Poisson distribution with mean λ is _____. 3) Let X has standard exponential distribution then $P\left[F(x) \le \frac{1}{4}\right] = \underline{\qquad}$ 4) Let X has B (1, p) distribution then (1 –X) has _____ distribution. 5) If Z is standard normal variate the variance of Z^2 is _____. C) State whether the following statements are **True** or **False**. 4 5 1) If X has Poisson distribution then 2 X has Poisson distribution. 2) The probability generating function is used for discrete variables only. 3) The moment generating if exists is unique. 4) $\{N(\theta,1), \theta \in R\}$ is a scale family. 2. a) i) Define location-scale family. Given an example of the same. ii) Show that Binomial distribution is a particular case of power series distribution. 6 b) Write short notes on the following: 8 1) Mixture of distribution. 2) Moment generating function. - 3. a) State and prove the relation between distribution function of a continuous random variable and uniform variable. - b) State and prove Holder's inequality. (6+8) - 4. a) State and Prove the result of generating geometric random variables from U (0,1) variates. - b) Let X be $U(0, \theta)$, where θ is an integer greater than one. Find the distribution of Y = [X]. (7+7) - 5. a) Define multinomial distribution. Obtain its moment generating function. Hence obtain the p.m.f. of trinomial distribution. - b) If X and Y are jointly distributed with p.d.f. $f(x,y) = x + y; 0 \le x \le 1, 0 \le y \le 1$. Find $P[X > \sqrt{y}]$. (8+6) - 6. a) Define bivariate Poisson distribution. Describe the method of generating random observations from it. - b) If X and Y are independent N (0,1) variates. Show that $$E[Max(X,Y)] = \frac{1}{\sqrt{\pi}}$$ (7+7) - 7. a) Define order statistics. Derive the joint distribution of rth and sth order statistics. - b) If (X, Y) is a bivariate random vector having joint p.d.f. $$f(x, y) = \theta^2 e^{-\theta y}, 0 < x < y < \infty$$. Find E [X/y] and E [Y/x]. (7+7) _____ | Seat | | |------|--| | No. | | #### M.Sc. (Part – I) (Semester – I) Examination, 2015 STATISTICS (Paper – V) (Old) Theory of Estimation Day and Date: Friday, 24-4-2015 Total Marks: 70 Time: 11.00 a.m. to 2.00 p.m. Instructions: 1) Attempt five questions. 2) Q. No. 1 and Q. No. 2 are compulsory. 3) Attempt any three from Q. No. 3 to Q. No. 7. 4) Figures to the right indicate full marks. 1. A) Select the correct alternative: 1) _____ is not a power series distribution. a) B(n, p) b)
C(1, 0) c) N(0, 1) d) N(1, 1) 2) Suppose X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n are two independent random samples from two populations having equal variance σ^2 . Let A = $\sum_{i=1}^m (X_i - \overline{X})^2$ and B = $\sum_{i=1}^n (Y_i - \overline{Y})^2$. Then an unbiased estimator of σ^2 is a) $$\frac{A+B}{m+n-2}$$ b) $$\frac{A+B}{m+n}$$ c) $$\frac{A+B}{m+n-1}$$ d) $$\frac{A}{m-1} + \frac{B}{n-1}$$ 3) Suppose X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$ distribution, where both μ and σ^2 are unknown. Then, . . . is a complete sufficient statistics. a) $$\sum_{i=1}^{n} X_{i}$$ b) $$\frac{1}{n-1}\sum_{i=1}^{n}X_{i}$$ c) $$\sum_{i=1}^{n} X_{i}^{2}$$ d) $$\left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2\right)$$ 2. | | 4) | Let $X \sim b(1, p)$, where $p \in (1/4, 3/4)$. observation X is | The MLE of p on the basis of a singl | e | |----|-----|---|---|------------| | | | a) X | b) $\frac{2X+1}{4}$ | | | | | c) 1-X | d) 1 + X | | | | 5) | Suppose X_1, X_2, \ldots, X_n is a random mean μ . The U-statistic for estimate | | e | | | | a) $\sum_{i=1}^{n} X_i$ | b) $\frac{1}{n} \sum_{i=1}^{n} X_{i}$ | | | | | c) $\sum_{i=1}^{n} (X_i - \overline{X})$ | d) None of above | (1×5) | | B) | Fil | II in the blanks : | | | | | 1) | is a function of every s | sufficient statistic. | | | | 2) | Suppose T is an unbiased estimato g is a function. | r of θ . Then g(T) is unbiased for g(θ) | if | | | 3) | statistic is independent | of every complete sufficient statistic | ; . | | | 4) | An unbiased estimator that attains C- | R lower bound is called | _ | | | 5) | Suppose $X_1, X_2,, X_n$ is a random variance σ^2 , then MME of σ is | | e
(1×5) | | C) | St | ate true or false : | | | | , | 1) | An unbiased estimator always exist | ts. | | | | 2) | MLE is not necessarily unique. | | | | | 3) | Bayes estimators are functions of s | sufficient statistics. | | | | 4) | Symmetric kernel does not exist for | every estimable parameter. | (1×4) | | a) | i) | Show that every one-to-one function | of a sufficient statistic is also sufficien | ıt. | | | ii) | Describe the method of minimum C | hi-square. | (3+3) | | b) | W | rite short notes on the followings : | | | | | i) | Bootstrap method | | | | | ii) | U statistic | | (4+4) | | | | | | | - 3. a) State and prove a necessary and sufficient condition for an estimator of a parametric function $\psi(\theta)$ to be UMVUE. - b) Derive UMVUE of $1/\theta$ based on a random sample from U(0, θ) distribution. (7+7) - 4. a) State Factorization theorem to determine a sufficient statistics and prove it for a discrete family of distributions. - b) Let X_1, X_2, \ldots, X_n be a random sample from N(0, σ^2) distribution. Show that $\sum_{i=1}^n X_i^2$ is a minimal sufficient statistics and $\sum_{i=1}^n X_i$ is not a sufficient statistic for σ^2 . (7+7) - 5. a) Define completeness. Prove or disprove that $\{U(0, \theta), \theta \in (0, \infty)\}$ is a complete family. - b) Define ancillary statistic. Suppose X_1 and X_2 are iid observations from pdf $f_{\alpha}(x) = \alpha x^{\alpha-1} e^{-x\alpha}$; x > 0, $\alpha > 0$. Show that $\log X_1 / \log X_2$ is an ancillary statistic. (7+7) - 6. a) Define MLE. State and prove the invariance property of MLE. - b) Let $X_1, X_2, ..., X_n$ be a random sample from exponential distribution with location parameter μ and scale parameter σ . Obtain MLE of $\mu + \sigma$. (7+7) - 7. a) State and prove Chapman-Robbins-Kiefer inequality. - b) Define Fisher information contained in a single observation and in n (> 1) independent and identically distributed observations. Obtain Fisher information matrix in case of $N(\mu, \sigma^2)$ distribution. (7+7) **SLR-BP - 477** | Seat | | |------|--| | No. | | a) Single point sets #### M.Sc. (Part – I) (Semester – II) Examination, 2015 STATISTICS (Paper – VI) Probability Theory (New) | Probability 1 | heory (New) | |---|---| | Day and Date : Thursday, 16-4-2015
Time : 11.00 a.m. to 2.00 p.m. | Total Marks : 70 | | Instructions: 1) Attempt five questions. 2) Q. No. 1 and Q. No. 2 a 3) Attempt any three from 4) Figures to the right ind | n Q. No. 3 to Q. No. 7 . | | 1. a) Choose the correct alternative. | 5 | | Let P(.) is a probability measure
 property of the measure. | defined on (Ω, IF) . Then $P(\Omega) = 1$ is | | a) Normed | b) Non-negativity | | c) Finite additivity | d) Sigma additivity | | 2) If A _n is equal to A or B according | as n is odd or even, the $\overline{\lim} A_n =$ | | a) 0 | b) 1 | | c) A ∩ B | d) A \cup B | | 3) Let X be a random variable define | ed on (Ω , IF) then | | <u>-</u> | b) 1 – X is a random variable | | c) X is a random variable | d) All the above | | 4) If X ₁ and X ₂ are independent rand | dom variables then $\phi_{x_1+x_2}(t) =$ | | a) $\phi x_1(t) + \phi x_2(t)$ | b) $\phi x_1(t) \phi x_2(t)$ | | c) $\phi x_1(t)$ | d) $\phi x_2(t)$ | | 5) Which of the following are Borel s | sets of real line ? | c) Closed intervals of type [a, b] d) All the above b) Open intervals of type (a, b) b) Fill in the blanks: 5 - 1) If E(X) is finite then X said to be - 2) A finite linear combination of indicators of sets is called _____ function. - 3) The minimal σ -field induced by indicator function I_A is - 4) The number of points in a set is called - 5) A set A is called co-finite set if - c) State whether the following statements are true or false. 4 - 1) The counting measure is a finite measure. - 2) Mutual independence implies pairwise independence. - 3) If Ω is the set of convergence then $\{X_n\}$ is said to be converge nowhere. - 4) Mapping preserves all the set relations. - 2. a) Answer the following: 6 - i) For a non-negative random variable X, prove that $E(X) = \int_{0}^{\infty} [1 F(x)] dx$. - ii) Define $\lim \inf \text{ and } \lim \sup \text{ of sequence of sets } \{A_n\}.$ - b) Write short notes on the following: - i) Lebesgue measure. - ii) Indicator function. - 3. a) Define monotone decreasing sequence of sets. Prove that if A_n is decreasing sequence of sets then A_n^c is increasing sequence. - b) Find lim inf and lim sup of following sequence of sets. i) $$A_n = \left(1 + \frac{1}{n}, 2 + \frac{1}{n}\right)$$ ii) $$A_n = \left[a - \frac{1}{n}, a\right]$$ (6+8) - 4. a) Define field. Examine for the class of finite or co-finite sets to be a field. - b) Define probability measure. State and prove monotone property of probability measure. (7+7) - 5. a) If X and Y are simple random variables then prove that E(X + Y) = E(X) + E(Y). - b) Let E be an experiment having two outcomes 'success' S and 'failure' F respectively. Let $\Omega = \{S, F\}$ and $IF = \{\phi, S, F, \Omega\}$. Define $$X(\omega) = \begin{cases} 1, & \text{if } \omega = S \\ 0, & \text{if } \omega = F \end{cases}. \text{ Examine whether X is random variable with respect}$$ to IF. $$(7+7)$$ - 6. a) Define almost sure convergence. Prove that almost sure convergence implies convergence in probability. - b) State Lindberg-Feller form of central limit theorem and deduce the Liapunov's theorem. (7+7) - 7. a) Define characteristic function of random variable X. Suppose X is Poisson (λ) random variable. Obtain characteristic function of X. - b) Find the distribution of random variable X when characteristic function is i) $$\phi_{x}(t) = \frac{1}{1+t^{2}}$$ ii) $$\phi_{x}(t) = e^{-|t|}$$. (6+8) | Seat | | |------|--| | No. | | ### M.Sc. (Part – I) (Semester – II) Examination, 2015 STATISTICS (Paper – VII) Linear Models (New) | | | Linear Mo | dels (New) | | | |-------|--|---|---|---------------------|-----------| | - | Date : Saturday,
.00 a.m. to 2.00 p | | | Total Ma | arks : 70 | | Ins | 2) (
3) A | Attempt any thre e | tions.
No. (2) are compu le
from Q. No. (3) to
ht indicate full man | Q. No. (7) . | | | , | a) y is known a | r model, $y = X\beta + 1$
and X is unknown | ε,
b) y and X both ar
d) X is unknown a | | | | 2) | | is estimable. | $+ \alpha_i + \beta_j + \varepsilon_{ij}; i = 1$ | | . q, | | 3) | | block design with | c) $\alpha_1 + \alpha_2$ or v treatments and b | | | | | a) v | b) b | c) b – 1 | d) v – 1 | | | 4) | | | k = | | | | 5) | a) rv A connected de | b) r(v – 1)
sign is | c) r(k – 1)
balanced. | d) $\lambda(v-1)$ | | | ٠, | a) sometimes | b) always | c) never | d) generally | (1×5) | | B) Fi | II in the blanks : | | | | | | 1) | In general linea equations is | $ xr model y = X\beta + $ | \in , a particular solu | ution of the norma | ıl | | 2) | | • | n two-way ANOVA
h one observation pe | | | | 3) | The BLUE of a | treatment contra | st $\sum_{i} c_{i} \alpha_{i}$ in a two-w | vay ANOVA mode | el is | | 4) | The physical va | | n the response varia | able involved in | | | 5) | A connected blo | ock design is orth | ogonal if and only if | | (1×5) | | | | | | | | #### **SLR-BP - 478** - C) State true or false: - 1) In general linear model, not every solution of normal equations minimizes residual sum of squares. - 2) In two-way ANOVA model with interaction and one observation per cell the degrees of freedom of SSE is 1. - 3) In general linear model, the BLUE of every estimable linear parametric function is a linear function of the LHS of normal equations. - In a connected block design, all elementary treatment contrasts are
estimable. (1×4) - 2. a) i) Show that in general linear model, the normal equations are consistent. - ii) Define complete block design, connected block design and orthogonal block design. (3+3) - b) Write short notes on the following: - i) Estimation space. - ii) C matrix in a general block design. (4+4) - 3. a) State and prove Gauss-Morkoff theorem. - b) Define error space for general linear model $y = X\beta + \epsilon$. Prove that a linear function of observations a'y belongs to the error space if and only if the coefficient vector a is orthogonal to the columns of X. (7+7) - 4. a) Describe error rates in multiple comparisons. - b) Derive a test for testing a general linear hypothesis in a general linear model. (7+7) - 5. a) Obtain the rank of the estimation space and a complete set of linearly independent estimable linear parametric function in one-way ANOVA model and show that only contrasts of treatment effects are estimable. - b) Derive the test for testing the hypothesis of the equality of column effects in two-way ANOVA without interaction model with one observation per cell. (7+7) - 6. a) Describe ANOCOVA model in general and obtain an expression for error SS. - b) Describe two-way ANOCOVA model and obtain the least square estimates of its parameters. (7+7) - 7. a) State and prove a necessary and sufficient condition for orthogonality of a general block design. - b) Prove that in a BIBD, the number of blocks is greater than or equal to the number of treatments. (7+7) _____ | Seat | | |------|--| | No. | | #### M.Sc. – I (Semester – II) Examination, 2015 STATISTICS (Paper – VIII) Stochastic Processes (New) Day and Date: Tuesday, 21-4-2015 Total Marks: 70 Time: 11.00 a.m. to 2.00 p.m. **Instructions**: 1) Attempt **five** questions. - 2) Q. No. 1 and 2 are compulsory. - 3) Attempt any three from Q. 3 to 7. - 4) Figures to the **right** indicate **full** marks. - 1. A) Select the most correct answer: | 1) | Number of | accidents upto time t (>0) is an example of | |----|-----------|---| | | time, | state space stochastic process. | - a) Discrete, discrete - b) Discrete, continuous - c) Continuous, discrete - d) Continuous, continuous - 2) Let $\{X_n, n \ge 0\}$ be a Markov chain with state space $\{0, 1, 2\}$ and tpm $$0 \quad 1 \quad 2$$ $$0 \left[\frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{3} \right]$$ $$P = 1 \left[\frac{1}{3} \quad 0 \quad \frac{2}{3} \right]$$ $$2 \left[\frac{1}{3} \quad \frac{1}{3} \quad 0 \right]$$ which of the following is correct? a) State 1 is transient - b) State 2 is periodic - c) State 1 and 2 are not communicative d) All states are recurrent 3) If $\{X_n, n \ge 0\}$ be a M.C. with state space $\{0, 1\}$ and tpm $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ then $$P(X_4 = 0|X_2 = 0)$$ _____ - a) 1 - b) 0.5 - c) 0 - d) Can't be calculated with available information - 4) If $\{X(t), t \ge 0\}$ is a Poisson process with rate $\lambda > 0$ then P(X(s) = k | X(t) = n) for s < t and k < n is a) $$B(n, \frac{s}{t}), k = 0, 1,...n$$ - b) $P(\lambda(t-s))$ - c) $B\left(k, \frac{s}{t}\right)$ for any k - d) None of these - 5) The probability generating function of the offspring distribution of a discrete time branching process is Q(s) = 0.4 + 0.6S. The probability of extinction is - a) 0 b) 0.3 c) 0.7 d) 1 - B) Fill in the blanks: - 1) In a MC both state space and index set are _____ - 2) If $\{X_n, n \ge 0\}$ is a MC then $P(X_{10} = i | X_0 = 0, X_1 = 1, X_2 = 2,..., X_g g) = 0$ - 3) If a chain is irreducible, _____, and if there exist a unique stationary distribution for the chain, then the chain is ergodic. - 4) For a poisson process $\{N(t), t \ge 0\}$ with intensity parameter λ , the variance of N(t) is _____ - 5) As $t\to\infty,\,\frac{M(t)}{t}\to$ ______, where M(t) is the renewal function. - C) State whether following statements are **true** or **false**: - 1) A matrix whose row sum is one is called as Stochastic matrix. - 2) $\lim_{n \to \infty} P_{ij}^{(n)}$ always exists. - 3) Birth death process is continuous time, discrete state space stochastic process. - 4) In a delayed renewal process, inter occurrence times are not i.i.d. (5+5+4) - 2. A) Let $\{X_n, n \ge 0\}$ be a MC with state space $\{0, 1\}$, tpm $P = \begin{bmatrix} 0 & 1 \\ 0.5 & 0.5 \end{bmatrix}$ and initial distribution is (0.5, 0.5) find, i) Marginal distribution of X₂ ii) $$f_{11}^{(3)}$$. (3+3) - B) Write short notes on the following: - i) Finite dimensional distributions of stochastic processes. - ii) M/M/1 queuing system. (4+4) - 3. A) Define: - i) Stochastic processes - ii) Processes with independent increments - iii) Non-homogeneous Markov chain - iv) Period of the state. - B) State the postulates of poisson process. Show that the inter-occurrence times of events of a poisson process are i.i.d. exponential r.v.s. (7+7) - 4. A) Explain Gambler's ruin problem in detail. - B) Prove that state j is persistent iff $$\sum_{n=0}^{\infty} P_{jj}^{(n)} = \infty.$$ (7+7) 5. A) Define stationary distribution. Obtain the stationary distribution of MC $\{X_n, n \ge 0\}$ with state space $\{0, 1, 2\}$ and t.p.m. $$\begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$ - B) State and prove Chapman-Kolmogorov equations. (7+7) - 6. A) Define Birth and Death Process. Obtain differential equations of the same. - B) Define BGW branching process and in usual notations establish $$\phi_{n+1}(s) = \phi_n(\phi(s)) \tag{7+7}$$ 7. A) Define a renewal process. Show that the renewal function M(t) satisfies the equation $$M(t) = F(t) + \int_{0}^{t} M(t - X)dF(X)$$. - B) Write down the algorithm for - i) Simulation of MC - ii) Simulation of Poisson process. (7+7) | Seat | | |------|--| | No. | | # M.Sc. (Part - I) (Semester - II) Examination, 2015 STATISTICS (Paper - X) Sampling Theory (New) | Day and Date : Saturday, 25-4-2015 Total Mark | s:70 | |---|------| |---|------| Time: 11.00 a.m. to 2.00 p.m. **Instructions**: 1) Attempt **five** questions. - 2) Q. No. 1 and Q. No. 2 are compulsory. - 3) Attempt any three from Q. No. 3 to Q. No. 7. - 4) Figures to the **right** indicate **full** marks. - 1. a) Choose the correct alternative. 1) If n units are selected in a sample from N population units, then sampling - a) $\frac{1}{N}$ b) $\frac{1}{n}$ c) $\frac{n}{N}$ d) $1 \frac{n}{N}$ 2) In a stratified sampling with strata sizes N₁ and N₂, stratum variances S_1^2 , S_2^2 under Neyman allocation the ratio of sample size $\frac{n_1}{n_2}$ is _____ - a) $\frac{N_1}{N_2}$ b) $\frac{N_1 S_1}{N_2 S_2}$ c) $\frac{S_1}{S_2}$ d) $\frac{N_1 S_1^2}{N_2 S_2^2}$ 3) In simple random sampling the ratio estimator is ______ - a) always biased - b) always unbiased - c) minimum variance unbiased - d) none of these 2. | | 4) | | 500, and 15 students are then selected ne procedure adopted is | | |----|-----|--|--|----| | | | a) cluster sampling b) | systematic sampling | | | | | c) two-stage sampling d) | stratified sampling | | | | 5) | Hurwitz-Hansen technique is used | I to deal with | | | | | a) non response errors b) | non sampling errors | | | | | c) sampling errors d) | none of these | | | b) | Fil | ill in the blanks : | | 5 | | | 1) | Cluster sampling helps to | cost of survey. | | | | 2) | A basic principle of stratifying a pointernally | opulation is that the strata should be | | | | 3) | Under SRSWR, the sample unit car | n occurtimes in the sample. | | | | 4) | In Midzuno sampling scheme, theprobabilities. | unit at first draw is selected with | | | | 5) |) Failure to measure some of the un | its in the selected sample is erro | r. | | c) | Sta | tate whether the following statemen | its are true or false : | 4 | | | 1) | Regression estimators are genera | Illy biased. | | | | 2) | Deep stratification is a technique ι | used to deal with non sampling errors. | | | | 3) | Systematic sampling is equal prob | pability sampling. | | | | 4) | In PPS sampling some units may | be selected with probability one. | | | a) | An | nswer the following : | | 6 | | | i) | What are basic principles of samp sampling over census method. | le survey? Write in brief advantages of | | | | ii) | Define circular systematic samplir | ng. Give an example. | | | b) | Wı | rite short notes on the following: | | 8 | | | i) | Cumulative total method | | | | | ii) | Midzuno system of sampling. | | | | | | | | | - 3. a) Explain and illustrate the benefits of stratifying a population before sampling. - b) Describe any two methods for allocating a sample of size n to different strata of population. (6+8) - 4. a) Explain the concept of systematic sampling. Derive the sampling variance of unbiased estimator of population mean under the linear systematic sampling. - b) Explain cluster sampling and clearly specify the advantages of the scheme. (7+7) - 5. a) Explain the ratio and regression methods of estimation. When are these methods considered to be efficient? - b) Define unbiased and almost unbiased ratio-type estimators. (8+6) - 6. a) Define PPSWR sampling design. Obtain an unbiased estimator of the population mean and its variance when a PPSWR sample of size n is drawn from a population of size n. - b) Define Horvitz-Thompson estimator of population mean and establish its unbaisedness under an arbitrary sampling design. Also derive its sampling variance. (7+7) - 7. a) Explain the problem of non response and any one technique to deal with the non response. - b) What is double sampling? Explain any one practical situation where double sampling is appropriate. (8+6) Seat No. #### M.Sc. (Part – I) (Semester – II) Examination, 2015 STATISTICS (Paper – VI) (Old) Probability Theory Day and Date: Thursday, 16-4-2015
Total Marks: 70 Time: 11.00 a.m. to 2.00 p.m. Instructions: 1) Attempt five questions. - 2) Q. No. (1) and Q. No. (2) are compulsory. - 3) Attempt any three from Q. No. (3) to Q. No. (7). - 4) Figures to the right indicate full marks. - 1. A) Choose the correct alternative: 1) Expectation of random variable $X = X^+ - X^-$ is said to exist if ______ - a) at least one of $E(X^+)$ or $E(X^-)$ is finite - b) both $E(X^+)$ and $E(X^-)$ are finite - c) both $E(X^+)$ and $E(X^-)$ are infinite - d) none of these - 2) Which one of the following statement is correct? - a) every field is a σ -field - b) union of fields is a field - c) intersection of fields is a field - d) $\{A, A^C\}$ is a field, where A is proper non-empty subset of Ω . - 3) Which one of the following statement is correct? a) $$X_n \xrightarrow{a.s.} X \Rightarrow X_n \xrightarrow{P} X$$ b) $$X_n \xrightarrow{L} X \Rightarrow X_n \xrightarrow{P} X$$ c) $$X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{a.s.} X$$ $$d) \ X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{r} X$$ | | | 4) | The trivial field is | _ | | | |----|----|------|--|--------|---|---| | | | | a) {φ} | b) | $\{\Omega\}$ | | | | | | C) $\{\phi, \Omega\}$ | d) | none of these | | | | | 5) | Let X Poisson (χ) variate. Then ch | narad | cteristic function of X is | | | | | | a) $e^{-\lambda(1-e^{it})}$
c) $e^{-\lambda(e^{it}-1)}$ | b) | $e^{\lambda(1-e^{-it})}$ $e^{\lambda(e^{-it}-1)}$ | | | | | | c) $e^{-\lambda(e^{it}-1)}$ | d) | $e^{\lambda(e^{-it}-1)}$ | | | | B) | Fill | in the blanks : | | | 5 | | | | 1) | If $\phi_X(t)$ is real then X is | | _ | | | | | 2) | A sequence of sets {A _n } is said to be | oe m | onotonic increasing if | | | | | | | | | | | | | 3) | If $X_n \xrightarrow{r} X$ then $E X_n ^r \to$ | | | | | | | 4) | If A is finite set with n elements ther elements. | n pov | ver set of A contains | | | | | 5) | If P (·) is a probability measure the | n P(A | / _C) = | | | | C) | Sta | ate whether the following statements | are | TRUE or FALSE. | 4 | | | | 1) | Almost sure convergence always in | mplie | es convergence in probability. | | | | | 2) | Every field is a σ -field. | | | | | | | 3) | Mutual independence implies Pairw | /ise i | ndependence. | | | | | 4) | Every field contains empty set $\boldsymbol{\phi}$. | | | | | 2. | a) | An | swer the following : | | | 6 | | | | i) | Define field and σ -field. | | | | | | | ii) | Prove that every σ -field is a field. | | | | | | b) | | ite short notes on the following: | | | 8 | | | | • | Mutual and Pairwise independence | | | | | | | II) | Strong law of large numbers. | | | | - 3. a) If F_1 and F_2 are fields. Show that - i) $F_1 \cap F_2$ is a field. - ii) $F_1 \cup F_2$ is not a field. b) Find $$\lim_{n \to \infty} A_n = \left(1 + \frac{1}{n}, 2 + \frac{1}{n}\right)$$ (8+6) - 4. a) State and prove continuity property of probability measure. - b) If $X_n \le Y$ and Y is integrable then show that $E(\overline{\lim} X_n) \ge \overline{\lim} E(X_n)$. (7+7) - 5. a) Prove that $X_n \xrightarrow{P} 0$ if and only if $E\left(\frac{|X_n|}{1+|X_n|}\right) \to 0$ as $n \to \infty$. - b) Let $\{X_n\}$ be a sequence of random variables such that $X_n \xrightarrow{L} X$ and c be a constant. Show that - i) $X_n + c \xrightarrow{L} X + c$ ii) $$c X_n \xrightarrow{L} cX, c \neq 0$$. (6+8) - 6. a) State Kolmogrov's three series criterion for almost sure convergence. - b) Let $\{A_n\}$ be a sequence of events such that $\sum_{n=1}^{\infty} P(A_n) < \infty$. Show that $P(\varlimsup A_n) = 0$. (6+8) - 7. a) Define characteristic function. Suppose X is B(n, p) random variable. Obtain characteristic function of X. - b) State inversion formula and obtain the probability distribution of random variable corresponding to characteristic function $\phi_X(t) = \frac{1}{1+t^2}$. (6+8) _____ | Seat | | |------|--| | No. | | ## M.Sc. (Part - I) (Semester - II) Examination 2015 | | STATISTICS (Paper – VII) (Old) Linear Models and Design of Experiments | | | | | | |----------|---|--|--|----------------------|--|--| | • | Date : Saturday, 18
00 a.m. to 2.00 p | | | Total Marks : 70 | | | | | 2)
3) | Attempt any thre | stions.
No. 2 are compulso
e e from Q. No. 3 to
I ht indicate full ma | Q. No. 7 . | | | | 1. A) Se | elect the correct a | lternative : | | | | | | 1) | In general linear and any BLUE a | • | function belonging | g to the error space | | | | | a) Positively cor | related | b) Uncorrelated | | | | | | c) Negatively co | orrelated | d) Correlated | | | | | 2) | | e estimation spaced k levels of treatn | • | OVA model with N | | | | | a) N – k | b) k – 1 | c) k | d) $N - k - 1$ | | | | 3) | For a BIBD with | usual notation, λ (| (v-l) = | | | | | | a) k (r – 1) | b) k (r + 1) | c) r (k + 1) | d) r (k – 1) | | | | 4) | In a connected to matrix is | olock design with | $_{\rm V}$ treatments and | b blocks, rank of C | | | | | a) $v-1$ | b) $v + 1$ | c) v | d) $vb-1$ | | | | 5) | In a general linea | ar model, the norn | nal equation are | | | | | | a) always consis | stent | b) not always con | sistent | | | | | c) always incon | sistent | d) not always in c | onsistent | | | | B |) Fill | in | the | b | lan | ks | : | |---|--------|----|-----|---|-----|----|---| |---|--------|----|-----|---|-----|----|---| | 1) | In general linear | model | $y = X\beta + \in$, | а | particular | solution | of the | normal | |----|-------------------|---------------------------------------|----------------------|---|------------|----------|--------|--------| | | equations is | · · · · · · · · · · · · · · · · · · · | | | | | | | | 2) | The rank of the estimation space in two-way ANOVA without interaction | on | |----|---|----| | | model with p rows and q columns and with one observation per cell | is | | 3) | A block design is | if and only | / if | $\text{CR}^{-\delta}$ | N = | 0. | |-----------------------|---------------------|--------------|------|-----------------------|-----|----| | $\boldsymbol{\smile}$ | 7 t blook acoign to | ii aiia oiii | , | \circ | — | • | | 4) | The degrees of freedom of error SS in two-way ANOVA wit | h interaction | |----|--|----------------| | | model with p rows and q columns and with $r > 1$ observation | on per cell is | | 5) | The degrees of freedom of error SS in two-way without interact | tion | |----|--|--------------------| | | ANOCOVA model with p rows, q columns, m observation per cell and | d m | | | covariate is | $(1 \times 5 = 5)$ | ### C) State True or False: - 1) In a general linear model, if S^- is g-inverse of S = X'X, its transpose is not in general g-inverse of S. - 2) $\mu + \alpha_i$, i = 1, 2, ..., k, are estimable in one-way ANOVA model with k levels of treatment. - 3) In a general linear model $y = X\beta + \epsilon$, the quantity XS^-X' is invariant under the choice of g-inverse of S = X'X. - 4) A balanced design is always connected. (1×4=4) - 2. a) i) Show that any solution of normal equations minimizes residual sum of squares. - ii) Prove or disprove that a connected design is always balanced. (3+3) - b) Write short notes on the following: - i) Estimation space. - ii) Tuckey's procedure of multiple comparisons. (4+4) 7 - 3. a) Show that in general linear model $y = X\beta + \epsilon$ - i) $H = H^2$ - ii) SH = H - iii) rank (H) = trace (H) = rank (S) = rank (X), where S = X'X, $H = S^-S$, S^- being g-inverse of S. (2+2+3) - b) Prove that in a general linear model $y = X\beta + \epsilon$, the BLUE of every estimable linear parametric function is a linear function of the LHS of normal equations, and conversely, any linear function of the LHS of normal equations is the BLUE of its expected value. - 4. a) Describe one-way ANOVA model and obtain the least square estimates of its parameters. - b) Derive the test for testing the hypothesis of the equality of row effects in two-way ANOVA without interaction model with one observation per cell. (7+7) - 5. a) Show that in general block design, adjusted treatment totals and block totals are uncorrelated. - b) State and prove a necessary and sufficient condition for orthogonality of a connected block design. (7+7) - 6. a) Describe ANOCOVA model in general and obtain the least square estimates of its parameters. - b) Describe two-way with interaction ANOVA model with r > 1 observations per cell and obtain the least square estimates of its parameters. (7+7) - 7. a) State and prove Gauss-Morkoff theorem. - b) Prove that in a BIBD, the number of blocks is greater than or equal to the number of treatments. (7+7) | Seat | | |------|--| | No. | | ## M.Sc. - I (Semester - II) Examination, 2015 STATISTICS (Paper – VIII) (Old) **Stochastic Processes** | Day and Date : Tuesday, 21-4-2015 | Total Marks : 70 | |-----------------------------------|------------------| | Time: 11 00 a m to 2 00 a m | | Time : 11.00 a.m. to 2.00 p.m. **Instructions**: 1) Attempt **five** questions. - 2) Q. No. 1 and 2 are compulsory. - 3) Attempt any three from Q. No. 3 to 7. - 4) Figures to the **right** indicate **full** marks. - 1. A) Select the most correct answer: - 1) Poisson process has - a) Discrete state space - b) Discrete index set - c) Continuous state space - d) None of the above - 2) Suppose $\{X_n, n \ge 0\}$ be a Markov chain, then state j is persistent iff - a) $\sum P_{ii}^{(n)} = 1$ b) $\sum P_{ii}^{(n)} = \infty$
c) $\sum P_{ii}^{(n)} > 1$ d) $\sum P_{ii}^{(n)} < \infty$ - 3) Let X(t) be a Poisson process with rate λ . Let P be the probability that an event is marked. Let Y(t) be a marked process then - a) Y(t) is branching process - b) Y(t) is birth and death process - c) Y(t) is Poisson process - d) None of the above - 4) In branching process, if $E(X_1) = m$, then $E(X_n) =$ - a) mⁿ - b) n^m - d) none of the above - 5) In a renewal process $M(t) = E\{N(t)\}$ is called - a) Renewal equation - b) Renewals number c) Renewal times d) Renewal function 5 4 - B) Fill in the blanks: - In an finite irreducible Markov chain all states are _____ - 2) If state K is aperiodic persistent non-null then $\lim_{n\to\infty} P_{kk}^{(n)} \to$ ______ - 3) A state j is called ergodic if it is _____ - 4) In M/M/S queuing system, 'S' represents _____ - 5) If {N (t), t≥0} is a Poisson process then interarrival time has _____ distribution. - C) State whether following statements are true or false: - 1) Period of any state must be greater than one. - 2) If initial distribution is known, distribution of Markov chain can be determined completely. - 3) State space of birth process is discrete. - 4) In usual notations, the elementary renewal theorem asserts, $\frac{M(t)}{t} \to \frac{1}{\mu}$ as $n \to \infty$. - 2. A) Define stochastic process. Give two examples. What do you mean by finite dimensional distribution of stochastic processes. - B) Define Markov chain. Show that Markov chain is completely specified by initial distribution and one step transition probability matrix. (7+7) - 3. A) State and prove first entrance theorem. - B) Define stationary distribution of Markov chain and mean recurrence time of its state. State the relation between two. (7+7) - 4. A) Let $\{X_n, n \ge 0\}$ be a Markov chain with state space $S = \{0, 1, 2\}$, t.p.m. $$P = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{4}{5} & \frac{1}{5} & 0 \\ 0 & \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$ and initial distribution (1, 0, 0). Obtain: 1) $$P[X_2 = 2 | X_0 = 1]$$ - 2) $P(X_2 = 1)$ - 3) $E(X_1)$. - B) Define first passage time. Let $\{X_n, n \ge 0\}$ be a Markov chain with state space $S = \{0, 1, 2\}$ and t.p.m. $$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 1 & 0 & 0 \\ 0 & \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$ Find first passage time distribution for state 1 given that system starts with 2. (8+6) - 5. A) Define Poisson process. Show that the inter-arrival times of a Poisson process are exponential random variables. - B) Derive the steady state probability distribution of population size in a Birth Death process. (7+7) - 6. A) Define a renewal process. Show that the renewal function M(t) satisfies the equation M(t) = F(t) + $$\int_{0}^{t}$$ M(t - x) d_F(x). - B) Define branching process. In a branching process with the off spring distribution having the p.g.f. P, show that the probability of eventual extinction is the smallest positive root of P(S) = S. (7+7) - 7. A) Write an algorithm for the simulation of branching process. B) Explain in detail M/M/S queuing model. (7+7) | Seat | | |------|--| | No. | | ## M.Sc. (Part – I) (Semester – II) Examination, 2015 STATISTICS (Paper – IX) (Old) Theory of Testing of Hypothesis | Day and Date: Thursday, 23-4-2015 | Total Marks: 70 | |-----------------------------------|-----------------| |-----------------------------------|-----------------| Time: 11.00 a.m. to 2.00 p.m. **Instructions:** 1) Attempt **five** questions. - 2) Q.No. (1) Q. No. (2) are compulsory. - 3) Attempt any three from Q. No. (3) to Q. No. (7) - 4) Figures to the **right** indicate **full** marks. - 1. A) Select correct alternative - i) Type I error is defined as - A) reject H_0 when H_0 is false - B) reject H₀ when H₀ is true - C) both (A) and (B) - D) none of the above - ii) If the Test function $\phi(x) = \begin{cases} 1 & \text{if } x > c \\ 0 & \text{otherwise} \end{cases}$ then the test is - A) randomised - B) non-randomised - C) both (A) and (B) - D) neither (A) nor (B) - iii) Testing a simple hypothesis H₀ against a simple alternative H₁, let the power of the MP tests at level α and α' be β and β' . Then always - A) $\beta \geq \beta'$ - B) $\beta \leq \beta'$ - C) $\beta = \beta'$ D) $\beta \neq \beta'$ - iv) For testing $H_0: \theta \ge \theta_0$ vs $H_1: \theta < \theta_0$ or $H_0: \theta \le \theta_0$ vs $H_1: \theta > \theta_0$, the UMP test exists for the family of distribution - A) belongs one parameter exponential family - B) has an MLR property - C) either (A) or (B) - D) none of the above 2. ii) Likelihood ratio test and MP test. (6+8) | | v) | Which statement is true? A) Every similar test has a Neyman B) Tests with Neyman-structure is C) Both (A) and (B) D) Neither (A) nor (B) | | | |----|------|--|--|---------| | B) | Fill | in the blank : | | | | | i) | The family of $U(0, \theta)$ distribution has sample of size 'n' is available from U | | when | | | ii) | Likelihood ratio test for testing H_0 : | $\theta \in \Theta_0$ vs $H_1 : \theta \in \Theta_1$ is defi | ned as | | | iii) | MLR property of the distribution is us | sed to obtain | _tests. | | | iv) | If $\lambda(x)$ denotes the likelihood ratio state of $-2 \log \lambda(x)$, under certain regular | - | | | | v) | UMP test leads to co | nfidence intervals. | | | C) | Sta | ate whether the following statements a | are true or false . | | | | i) | UMP test always exist | | | | | ii) | Test with Neyman-structure is a sub | set of similar test. | | | | iii) | There is no difference between leve | l and size of a test. | | | | iv) | If ϕ is a test function then $(1-\phi)$ is | also a test function. | (5+5+4) | | a) | An | swer the following. | | | | | i) | Define simple and composite hypoth | esis. Give one example ea | ch. | | | ii) | Explain shortest length confidence in | nterval. | | | b) | Wr | ite short notes on the following. | | | | | i) | Chi-square test for contingency table | 9 | | - 3. a) State and prove the sufficiency part of Neyman-Pearson lemma. - b) Let x be a random sample with p.d.f.'s $$f_0(x) = 1$$ $0 \le x \le 1$ = 0 otherwise and $$f_1(x) = 4x 0 \le x \le \frac{1}{2}$$ $$= 4 - 4x \frac{1}{2} \le x \le 1$$ $$= 0 \text{otherwise}$$ on the basis of one observation, obtain the MP test of H_0 : $f = f_0$ against H_1 : $f = f_1$ at level $\alpha = 0.05$. What is the power of M.P. test? (7+7) - 4. a) Show that for p.d.f.'s $f_{\theta}(x)$ which have MLR property in T(x), there exist an UMP test of size α for testing $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$. - b) Let $X_1, X_2 \dots X_n$ be iid $N(\theta, \sigma^2)$ where σ^2 is known consider the testing problem $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$. Show that a UMP size- α test for testing this problem does not exists. (7+7) - 5. a) Define the terms. - I) Confidence coefficient of a confidence set - II) UMA confidence set - III) Unbiased confidence set - b) Obtain a UMA confidence interval for θ based on a random sample of size n from $U(0,\theta)$. (6+8) - 6. a) Describe the Wilcoxon Signed -Rank test for single sample of size n. - b) Define - i) Similar test - ii) Test with Neyman-structure - iii) UMP α -similar test. Describe the method of obtaining similar test. (6+8) - 7. a) Let $X_1, X_2, \dots X_n$ be a random sample of size n from a normal population with mean μ and unknown variance σ^2 . Derive LRT test to test $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$. - b) Write short notes on the following. - i) Generalised N-P lemma - ii) MLR property. (8+6) _____ | Seat | | |------|--| | No. | | ## M.Sc. (Part – I) (Semester – II) Examination, 2015 | | S | STATISTICS (I
Sampling The | • • | | | |----------|---|--|---|----------------------------|-----------------| | • | ate : Saturday, 25-4-
00 a.m. to 2.00 p.m. | -2015 | | | Total Marks: 70 | | Ins | 3) Atten | npt five question
o. 1 and Q. No. 2
npt any three fr
es to the right i | ? are compu
om Q. No. 3 | to Q. No. 7 . | | | 1. a) Ch | oose the correct alte | ernative : | | | 5 | | , | If an investigator sel
districts then such a | | | | | | | a) systematic samp | oling | b) double | sampling | | | | c) two-stage sampli | ing | d) clusters | sampling | | | 2) 3 | Systematic sampling | means | | | | | | a) selecting n contin | nuous units | | | | | | b) selecting n units | situated at equa | al intervals | | | | | c) selection of n lar | | | | | | | d) selection of any | | | | | | • | Under proportional a
to | | mple size for | i th stratum is | s proportional | | | a) N _i | b) N _i S _i | c) N _i S _i ² | d) $\frac{N_i}{S_i}$ | - | | 4) \ | Which of the followin | ng estimators is | generally bia | ased? | | | | a) Horvitz-Thompso | on Estimator | | | | | | b) Des Raj estimato | or | | | | | | c) Heartly-Ross est | timator | | | | | | d) Ratio estimator | | | | | 2. | | 5) | Non sampling errors occurs in | | |----|---
--|---| | | | a) only sample surveys | | | | | b) only complete enumeration | | | | | c) sample surveys as well as complete enumeration | | | | | d) none of these | | | b) | Fi | Il in the blanks : | 5 | | | 1) | Horvitz-Thompson estimator is used when sample selection is done with probabilities. | | | | 2) | Errors introduced in editing, coding and tabulating the results are errors. | | | | 3) | Strata in stratified sampling should be internally | | | | 4) | Under SRSWOR, the sample unit can occur in the sample. | | | | 5) | If 30 units are drawn in a population of 300 units then sampling fraction is | | | | | | | | c) | St | ate whether the following statements are True or False : | 4 | | c) | | tate whether the following statements are True or False : Des Raj estimators are unbiased. | 4 | | c) | 1) | | 4 | | c) | 1)
2) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means | 4 | | c) | 1)
2)
3) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. | 4 | | · | 1)
2)
3)
4) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. | 4 | | · | 1)
2)
3)
4)
Ar | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. | | | · | 1)
2)
3)
4)
Ar
i) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. In the following: | | | a) | 1) 2) 3) 4) Ar i) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. In swer the following: Explain sampling method and census method. In SRSWOR, show that the probability of drawing a specified unit at every | | | a) | 1)
2)
3)
4)
Ar
i)
ii) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. In swer the following: Explain sampling method and census method. In SRSWOR, show that the probability of drawing a specified unit at every draw is same. | 6 | | a) | 1) 2) 3) 4) Ar i) ii) W | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. In swer the following: Explain sampling method and census method. In SRSWOR, show that the probability of drawing a specified unit at every draw is same. In the probability of drawing a specified unit at every draw is same. In the probability of drawing a specified unit at every draw is same. | 6 | - 3. a) In SRSWOR examine whether sample mean is an unbiased estimator of population mean. Derive its variance. - b) Define linear systematic sampling. Derive the sampling variance of the traditional unbiased estimator of a population mean under this scheme. (6+8) - 4. a) Explain two stage sampling. Give a practical situation where such a design can be used. - b) Explain a cluster sampling. In SRSWOR of n clusters each containing M elements from a population of N clusters. Show that sample mean is unbiased estimator of population mean. (7+7) - 5. a) Describe stratified random sampling. Explain various sample allocation criteria in stratified sampling. - b) Explain the concept of formation of strata. Derive the proportional allocation for the best value of the boundary point Y_h of h^{th} stratum. (7+7) - 6. a) Explain the ratio and regression methods of estimation. - b) Make a comparison between the ratio and regression estimators in terms of MSE and state when the ratio estimator can be more efficient than regression estimator. Justify your answer. (7+7) - 7. a) What is the problem of non response? Discuss Hansen-Hurwitz technique for dealing this problem. - b) Define ordered and unordered estimators. Develop Murthy's unordered estimator for n = 2. (7+7) _____ | Seat | | |------|--| | No. | | ## M.Sc. (Part – II) (Semester – III) Examination, 2015 STATISTICS (Paper – XI) Asymptotic Inference | Day and Date: Wednesday, 15-4-2015 | Total Marks : 70 | |------------------------------------|------------------| |------------------------------------|------------------| Time: 3.00 p.m. to 6.00 p.m. Instructions: 1) Attempt five questions. - 2) Q.No. (1) and Q.No. (2) are compulsory. - 3) Attempt any three from Q. No. (3) to Q. No. (7) - 4) Figures to the right indicate full marks. - 1. A) Choose the correct alternative: 5 - 1) An estimator $\hat{\mu}_Y$ of population value μ_Y is more efficient when compared with another estimator $\widetilde{\mu}_Y$ if - a) $E(\hat{\mu}_{Y}) > E(\widetilde{\mu}_{Y})$ - b) It has smaller variance - c) Its cdf is flatter than that of the other - d) Both estimators are unbiased and $Var\left(\hat{\mu}_{Y}\right) < Var\left(\widetilde{\mu}_{Y}\right)$ - 2) The variance stabilizing transformation for binomial population is - a) square root - b) logarithmic - c) sin^{-1} - d) $tanh^{-1}$ - 3) In case of N $(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma^2 > 0$, the MLE of σ^2 is - a) unbiased and consistent - b) biased and consistent - c) unbiased and not consistent - d) biased and not consistent - 4) IF T_n is consistent estimator of θ then $\phi(T_n)$ is consistent estimator of $\phi(\theta)$ if - a) φ is linear function - b) ϕ is continuous function - c) ϕ is differentiable function - d) none of these - 5) The asymptotic distribution of Rao's statistic is - a) normal - b) t - c) chi-square - d) F B) Fill in the blanks. 5 - 1) Let $X_1, X_2, ..., X_n$ be iid with $E(X_i^2) = Var(X_i) = \sigma^2$. The asymptotic distribution of \overline{X}_n is _____. - 2) Let $X_1, X_2, ..., X_n$ be iid B(1, θ). CAN estimator of P_{θ} (X = 1) is _____. - 3) Cramer class is _____ than exponential class of distributions. - 4) For Laplace $(\theta, 1)$ distribution, asymptotic variance of \overline{X}_n is _____. - 5) Let $X_1, X_2,...,X_n$ be iid N (θ , 1). Then CAN estimator of θ^2 is _____. - C) State whether the following statements are **true** or **false**. 4 - 1) Cauchy distribution is a member of Cramer family. - 2) Every CAN estimator is consistent. - 3) Consistency of estimator is always unique. - 4) Consistent estimator based on MLE need not be CAN. - 2. a) Answer the following. 6 - i) State Cramer-Huzurbazar results. - ii) Let $X_1, X_2, ..., X_n$ be iid $U(0, \theta)$. By computing the actual probability, show that $X_{(n)}$ is consistent estimator for parameter θ . - b) Write short notes on the following. 8 - i) Super efficient estimator. - ii) Strong consistency. - 3. a) Define consistent estimator. State and prove invariance property of consistent estimator. - b) Let $X_1, X_2, ..., X_n$ be a random sample from exponential distribution with location parameter θ . Find two consistent estimators of θ . Examine the CAN property of the suggested estimators. (6+8) a) State Cramer regularity conditions in one parameter set up. Give an example of a distribution which satisfies Cramer regularity conditions. Justify your answer. -3- - b) Let $X_1, X_2,..., X_n$ be a sample from $N(\theta, \sigma^2)$ distribution. Obtain CAN estimator of σ^2 . (7+7) - 5. a) Define CAN estimator. Show that sample distribution function at a given point is CAN for the population distribution function at the same point. - b) Let X_1 , X_2 ,..., X_n be iid $N(\theta, \sigma^2)$ random variables. Find the variance stabilizing transformation for S^2 and obtain 100 (1 α)% confidence interval for σ^2 based on the transformation. (7+7) - 6. a) Describe Bartlett test for homogeneity of variances. - b) Let $X_1, X_2, ... X_n$ be a random sample of size n form the distribution with pdf, $f(x;\mu,\lambda) = \frac{1}{\lambda} \exp\left[-\left(\frac{x-\mu}{\lambda}\right)\right], x \geq \mu, \lambda > 0 \text{ . Obtain moment estimator of}$ (μ,λ) and its variance-covariance matrix. (6+8) - 7. a) Define m-parameter exponential family of distributions. Show that $\left\{N(\mu,\sigma^2), \, \mu \in R, \, \sigma^2 > 0\right\} \text{is a two-parameter exponential family}.$ - b) Let $X_1, X_2, ... X_n$ be iid Poisson (λ). Obtain CAN estimator of $\lambda e^{-\lambda}$. Discuss its asymptotic distribution at $\lambda = 1$. (6+8) | Seat | | |------|--| | No. | | # M.Sc. (Part – II) (Semester – III) Examination, 2015 | Plan | STATISTI
nning and Analys | CS (Paper – X
is of Industria | | | |---|---
---|-------------------------------|----------| | Day and Date : Mor
Time : 3.00 p.m. to | • | | Total Marks | : 70 | | Instruction | s: 1) Attempt five q
2) Q. No. 1 and (
3) Attempt any to
4) Figures to the | Q. No. 2 are com
hree from Q. No. | 3 to Q. No. 7. | | | 1. A) Choose the | correct alternative : | | | 5 | | | d experimentation, w | hen experimenta | I material is heterogeneous, | | | a) CRD | b) RBD | c) LSD | d) None of these | | | 2) The alias | = | of 2 ^{k – 1} design is | I = ABCD, then alias of A | | | a) BCD | b) ACD | c) ABD | d) ABC | | | • | ction of p generator o | of 2 ^{k – p} fractional | factorial design is in such a | | | a) it has | lowest possible reso | olution | | | | b) it has | minimum aberration | 1 | | | | • | highest possible res | | | | | d) it has | maximum aberration | n | | | | | cts of same order are osaid to be | confounded with | ncomplete block difference, | | | a) comp | lete confounding | b) partia | l confounding | | | c) balan | nced confounding | d) none | of these | | | | cts which are to be c | ompared in comp | parative experiment are | | | a) block | is . | b) treatr | nent | | | c) rando | omization | d) all the | | | | | | | D | $T \cap$ | | | B) | Fi | ill in the blanks : | 5 | |----|----|-----|--|-------| | | | 1) | In one-half fraction with I = + ABC is called | | | | | 2) | Replication reflects source of variability both runs and | d | | | | | runs. | | | | | 3) | Residual can be check by using formula e _{ij} = | | | | | 4) | Each contrast among k treatments has degrees of freedom | ٦. | | | | 5) | The shortest word length is called | | | | C) | S | tate whether the following statements are True and False : | 4 | | | | 1) | Factorial design is necessary when interaction may be present to avoid the misleading result. | d | | | | 2) | Fractional Factorial design reduces the number of levels of size. | | | | | 3) | The procedure for moving sequentially along in the direction of maximizatio then it is said to be steepest descent. | n | | | | 4) | In randomization the treatments are allocated to the experimental unit has with equal probability. | S | | 2. | a) | Α | nswer the following : | 6 | | | | i) | Define orthogonal array. Give its example. | | | | | ii) | What is location and dispersion modeling? | | | | b) | W | rite short notes on the following : | 8 | | | | i) | Total confounding. | | | | | ii) | Control composite design. | | | 3. | a) | | btain a complete replicate with block size 8 for 2 ⁵ factorial design having BC and ADE interactions confounded simultaneously. | g | | | b) | | escribe a 3 ² factorial experiment with factors A and B. Give complete rocedure of analysis along with the ANOVA table. | (7+7) | - 4. a) Explain Taguchi in design of experiment in terms of mode and layout of the experiment. - b) Find 2_{III}^{6-2} fraction having different aberrations. Use these fractions to state advantages of a fraction with less aberration over the other fractions. (7+7) - 5. a) Write a short note on Response Surface Methodology (RSM). What are response surface designs? Write a note on design for fitting the first order modes. - b) Explain main effects and interactions in a factorial experiment with special reference to a 2² design. Give graphical representation to interaction in it. (7+7) - 6. a) Explain the one quarter fraction of 2^k experiment. - b) Describe the random effect model of one way classification. (7+7) - 7. a) Define resolution of a design. What is resolution III, IV and V design? - b) Explain in brief about design of experiments. Also state the advantages and disadvantages of the same. (7+7) **SLR-BP - 490** | Seat | | |------|--| | No. | | | M.Sc. (Part – II) (Semestei
STATISTICS | , | |---|---| | Modeling and | ` • | | Day and Date: Wednesday, 22-4-2015 | Total Marks: 70 | | Time: 3.00 p.m. to 6.00 p.m. | | | Instructions: 1) Question No. 1 a
2) Attempt any thro
3) Figures to right | ee questions from Q. 3 to Q. 7. | | 1. A) Select the correct alternative. | 10 | | i) The slack for an activity in networ | k is equal to | | a) LS-ES b) LF-LS | c) EF-ES d) EF-LS | | ii) If small orders are placed frequer | tly, then total inventory cost is | | a) Reduced | b) Increased | | c) Either reduced nor increased | d) Minimized | | iii) Simulation is | | | a) Descriptive in nature | | | b) Useful to analyze problem wh | ere analytical solution is difficult | | c) A statistical experiments as su errors | ich as its results are subject to statistical | | d) All of the above | | | iv) Repetition of n independent Berno | oulli trails reduced to | | a) Poisson distribution | b) Binomial distribution | | c) Geometric distribution | d) Hypergeometric distribution | | v) Simulation of system in which the called | state changes smoothly with time are | | a) Continuous system | b) Discrete system | | c) Deterministic system | d) Probabilistic system | | vi) | The activity which can be delayed without affecting the execution of immediate succeeding activity is determined by | | | | | |-------|---|------------------------------------|--|--|---| | | a) Total float | | b) Free float | | | | | c) Independent | float | d) None of these |) | | | vii) | | • | | mer arrival rate and μ
er being busy is equal | | | | a) $\frac{\lambda}{\mu}$ | b) $\frac{\lambda}{\mu - \lambda}$ | c) $\frac{\mu}{\mu - \lambda}$ | d) $\frac{\mu}{\lambda}$ | | | viii) | ergodic. | | | of whose states are | | | | a) One | b) Some | c) All | d) None | | | ix) | the last symbol 'e | e' specifies | · | c form (a/b/c/) : (d/e), | | | | • | - | b) The number ofd) The distribution | | | | x) | served, no matter | how he has to wa | it for service is calle | vs in the system until ed customer. | | | | a) a regular | b) an irregular | c) a patient | d) an impatient | | | B) Fi | ll in the blanks. | | | | 4 | | i) | In EOQ problem, cost and | | ost occurs at a poi | nt where the ordering | | | ii) | The long form of 0 | CPM is | | | | | iii) | Chapman-Kolmo | gorov equation is | $P_{ij}(t + T) =$ | · | | | iv) | In inventory mode | el, the number of u | nit required per pe | riod is called | | | | A customer arrive $\lambda = 4$ per hour, given | | - | son process with rate
n, then what is | | | | probability that ex | - | - | .30 am ? | 3 | | ŕ | What do you mear | - | | | 3 | | | State and prove th | • | nogorov equation. | | 4 | | 11) | Write note on sim | uiation. | | | 4 | 7 B) Explain pure birth process. | 3. | A) Differentia | A) Differentiate between PERT and CPM. | | | | | 7 | | | | |--|--|---|---------|---------|---------|----------|---------|---------|------------------------------|---| | | B) Explain the | 3) Explain the generation of random sample from continuous uniform distribution. 7 | | | | | 7 | | | | | 4 | A) Explain the inventories | | cept of | invent | tory co | ntrol. V | Vrite a | ny fou | r reasons for carrying | 7 | | | B) The demand rate for a particular item is 12000 units/ year. The ordering cost of Rs. 1,000 per order and the holding cost is Rs. 0.80 per month. If no shortage are allowed and the replacement is instantaneous the determine i) Economic order quantity ii) Number of order per year. | | | | | | | 7 | | | | 5. | A) For various completic | | - | - | ticular | projec | t the e | expecte | ed time (in days) of | 7 | | | Activity | 0 –1 | 1 – 3 | 1 – 2 | 2 – 3 | 1 – 4 | 3 – 4 | 4 – 5 | | | | | Duration | 3 | 16 | 6 | 8 | 10 | 5 | 3 | | | | | Draw a ne | etwork | diagra | m and | identif | y the c | ritical | path. | | | | | B) Write step | os in of | Monte | e-Carlo | simula | ation te | echniq | ue. | | 7 | | 6. | 6. A) Generate the five successive random number X_i , $i = 1, 2, 3, 4, 5$ by using $X_{i+1} = X_i^* a$ (modulo m), starting with seed $X_0 = 3$ and parameters $a = 7$ and | | | | | | | | | | | $m = 15$ (where m means that the number $\{X_i^*a\}$ is divided by m repeatedly till the reminder is less than m). | | | | | | 7 | | | | | | | B) Define protime, and | • | | • | | | • | | art time, latest start
n. | 7 | | 7. | A) Define sir | nulatio | n. Writ | e the a | advanta | ages a | nd limi | tations | s of simulation. | 7 | Seat No. ## M.Sc. (Part – II) (Semester – IV) Examination, 2015 STATISTICS (Paper - XVI) **Discrete Data Analysis** Day and Date: Thursday, 16-4-2015 Total Marks: 70 Time: 3.00 p.m. to 6.00 p.m. **Instructions**: 1) Attempt **five** questions. 2) Q. No. 1 and Q. No. 2 are compulsory. 3) Attempt any three from Q. No. 3 to Q. No. 7. 4) Figures to the **right** indicate full marks. 1. A) Select the correct alternative: I) In rural notations, the $\{agi\}$ transformation is given for A) $$\frac{\pi(x)}{1-\pi(x)}$$ B) $ln\left(\frac{\pi(x)}{1-\pi(x)}\right)$ C) $ln\left(\frac{1-\pi(x)}{\pi(x)}\right)$ D)
$\frac{1-\pi(x)}{\pi(x)}$ II) If the response variable in GLM follows Poisson distribution, then following link function is suitable A) $$\log{(\theta)}$$ B) $\log{\left(\frac{1}{\theta}\right)}$ C) $\log{\left(\frac{\theta}{1-\theta}\right)}$ D) $\log{\left(\frac{1-\theta}{\theta}\right)}$ III) When the two categorical variables are independent the cross product ratio for a 2×2 table is equal to C) $\frac{1}{2}$ D) $\frac{3}{4}$ A) 1 B) 0 IV) In regression analysis when the outcome variable is dichotomous, E [Y/X] must lie in - B) $(-\infty, \infty)$ C) $[0, \infty]$ A) [0, 1] D) {0, 1} - V) In log-linear model U_{12} is a higher order relative of - In log-linear model U_{12} is a higher order relative of A) U_1 only B) U_2 only C) U_1 and U_2 D) U_{123} 2. 3. | B) | | in the blanks: | |----|------|---| | | i) | The odds ratio of 2 × 2 table is defined as | | | ii) | The logistic regression Y on X is | | | iii) | The number of independent U_{12} terms in an $I \times J \times K$ table are | | | iv) | A G ² - statistic is distributed as | | | v) | The Kernal of the log-likelihood function based on a sample from Poisson distribution is | | C) | Sta | te whether the following statements are true or false : | | | i) | Brich results are used to assess the goodness of fit of a log-linear model. | | | ii) | A GLM with log-link function is the classical linear model. | | | iii) | In any log-linear model, the mle of expected cell frequencies always closed form expression. | | | iv) | Logistic regression model is appropriate when the response variable is | | | | normal. (5+5+4) | | a) | Exp | plain the following terms : | | | i) | Brich's results | | | ii) | Link function in GLM. | | b) | Wr | ite short notes on the following : | | | i) | Polytomous logistic regression model. | | | ii) | Multinomial sampling scheme. (6+8) | | a) | | an I \times J table, write a log-linear model and obtain the relationship between interaction term U_{12} and cross product ratio when I = 2. | b) With reference to an $I \times J \times K$ table with $U_{123} = U_{12} = 0$, obtain m.l.e. of elementary cell frequencies. (7+7) - 4. a) Explain the following terms: - i) Hierarchical family of models - ii) Cross product ratio for 2 × 2 table - iii) Relative risk. - b) State and establish a condition for the existence of 'direct estimates' of elementary cell frequencies in an $I \times J \times K$ table. (6+8) - 5. a) Explain the following terms: - i) Deviance - ii) One parameter exponential family of distribution - iii) Generalized linear model. - b) Derive Nelder and Wedderburn's weighted least squares estimator of the parameters of a GLM. (6+8) - 6. a) Define the logistic regression model. Discuss the Pearson residual and deviance residual in the context of logistic regression. - b) Consider logistic regression model with single dichotomous independent variable. Derive the log-odds ratio. Give a computational procedure for obtaining estimates of odds ratio. (7+7) - 7. a) Explain the non-parametric regression and smoothing splines. - b) Define the Poisson regression. Give a situation where poisson regression is an appropriate. Derive the score equation for the same. (7+7) | Seat | | |------|--| | No. | | ## M.Sc. (Part – II) (Semester – IV) Examination, 2015 STATISTICS (Paper – XVII) Industrial Statistics | | | | s (Paper – XVII)
ial Statistics | | |----------|---|--|---|------------------------------| | • | Date : Saturday, 1
0 p.m. to 6.00 p.ı | | | Total Marks : 70 | | Ins | 3) A |). No. (1) and 0
ttempt any thi | estions.
Q. No. (2) are comp
r ee from Q. No. (3)
ight indicate full m | to Q. No. (7) . | | 1. A) Se | elect the correct a | alternative : | | | | 1) | Quality is inverse a) Variability | | ll to
c) Method | d) Time | | 2) | a) Chance-cause
b) Assignable of
c) Both chance
d) None of chair | cause
and assignab | le cause | | | 3) | C _p | C _{pk} · | | n. | | | | | | d) > | | 4) | a) Aesthetics | b) Features | nension of quality.
c) Durability | d) Cost | | 5) | The probability of a) 0.027 | | or \overline{X} chart with 3σ lirc) 0.0027 | | | B) Fil | I in the blanks : | | | | | 1) | | | narts are the better a | | | 2) | The formula for | C _{pk} is | | | | | | | art if the sample size | e is | | 4) | The process cap
terms of the prol | | | ot have interpretation in | | 5) | The SPC tool worked out first. | | alizes the most sig | nificant problem to be (1×5) | SLR-BP – 493 - C) State true or false: - 1) Product control relies on inspectors. - 2) False alarm is the indication of in-control state of a process when it is really out-of-control. - 3) The process capability index C_{pk} does not take into account location of the process mean. - PDCA cycle may require several iterations for solving a quality problem. (1×4) - 2. a) i) Describe types of variability. - ii) Describe curtailed and semi-curtailed sampling plans. (3+3) - b) Write short notes on the following: - i) Cause and effect diagram. - ii) Process capability index C_{pm}. (4+4) - 3. a) Define statistical quality control. Describe product control and process control. - b) Define the process capability index C_{pk} . State and prove the relation between C_{pk} and the probability of nonconformance associated with it. (7+7) - 4. a) Describe construction, operation and the underlying statistical principle of p chart. - b) Describe construction and operation of EWMA control chart for monitoring process mean. (7+7) - 5. a) Define process capability index. Define index C_p with the necessary underlaying assumptions. What is its interpretation? - b) Describe the DIMAC cycle. (7+7) - 6. a) Describe single attribute sampling inspection plan based on hypergeometric distribution. - b) Describe sampling inspection plan by variables when both lower and upper specification limits are given and the standard deviation is known. (7+7) - 7. a) Describe construction, operation and the underlying statistical principle of Hotelling's T² chart. - b) Describe six-sigma methodology. (7+7) _____ | Seat | | |------|--| | No. | | ## M.Sc. (Part – II) (Semester – IV) Examination, 2015 STATISTICS (Paper – XVIII) Reliability and Survival Analysis Day and Date: Tuesday, 21-4-2015 Total Marks: 70 Time: 3.00 p.m. to 6.00 p.m. Instructions: 1) Attempt five questions. - 2) Q. No. (1) and Q. No. (2) are compulsory. - 3) Attempt any three from Q. No. (3) to Q. No. (7). - 4) Figures to the right indicate full marks. | 1. | A) | Choose the correct alternative | |----|----|--------------------------------| |----|----|--------------------------------| 5 - 1) For which of the following family each member has non-monotone failure rate? - a) Exponential b) Weibull c) Gamma - d) Lognormal - 2) For Weibull distribution _____ parameter decides whether distribution belongs to the IFR class or the DFR class. - a) Location b) Shape c) Scale - d) All the above - 3) In censored data actuarial estimator of survival function is _____ a) $$\sum_{i=1}^{k} \hat{P}_i$$ b) $$\frac{1}{k} \sum_{i=1}^{k} \hat{P}_i$$ c) $$\prod_{i=1}^{k} \hat{p}_{i}$$ d) $$\prod_{i=1}^{k} (\hat{p}_i)^{\frac{1}{2}}$$ 4) The ith component of a system is relevant if _____ a) $$\phi(1_i, \underline{x}) = 1$$ and $\phi(0_i, \underline{x}) = 1$ b) $$\phi(1_i, \underline{x}) = 1$$ and $\phi(0_i, \underline{x}) = 0$ c) $$\phi(1_i, \underline{x}) = 0$$ and $\phi(0_i, \underline{x}) = 0$ d) $$\phi(1_i, \underline{x}) = 0$$ and $\phi(0_i, \underline{x}) = 1$ | | | 5) A function $g(x)$ defined on $[0, \infty)$ is | A function g(x) defined on [0, ∞) is star shaped function if for $0 \le \alpha \le 1$, | | | | | |----|----|--|---|-----------------|-------|--|--| | | | a) $g(\alpha x) \leq [g(x)]^{\alpha}$ | b) $g(\alpha x) \ge [g(x)]^{\alpha}$ | | | | | | | | c) $g(\alpha x) \le \alpha g(x)$ | d) $g(\alpha x) \ge \alpha g(x)$ | | | | | | | B) | Fill in the blanks : | | | 5 | | | | | | 1) IFR property is preserved under | | | | | | | | | 2) $F \in IFRA$ if and only if $-\log R(t)$ is | | | | | | | | | 3) A sequence of (2×2) contingency to | ables is used in | | | | | | | | 4) In type II censoringis | fixed. | | | | | | | | 5) The minimal path sets for a structure | e φ are | _ for its dual. | | | | | | C) | State whether the following statements a | are True or False : | | 4 | | | | | | 1) The dual of a parallel system is not a | a parallel. | | | | | | | | 2) For exponential distribution failure ra | ate is constant. | | | | | | | | 3) Weibull distribution is IFR for all para | ameter values. | | | | | | | | 4) IFRA property is preserved under co | nvolution. | | | | | | 2. | a) | Answer the following: | | | 6 | | | | | | 1) Define minimal path sets and minimal of | ut sets. Illustrate the sa | me by examp | le. | | | | | | 2) Define k out of n system. Obtain the | reliability function of | fthis system. | | | | | | b) | Write short notes on the following: | | | 8 | | | | | | 1) Empirical survival function and its pr | roperties. | | | | | | | | 2) Log-rank test. | | | | | | | 3. | a) | Define NBU and NBUE classes of distri $F \in IFRA \Rightarrow F \in NBU$. | butions. Prove that | | | | | | | b) | Give two definitions of star shaped funct | ion and prove their ed | quivalence. | (7+7) | | | | 4. | a) | Describe various censoring
schemes. | | | | | | | | b) | Obtain MLE of the mean (θ) of an exponand type II censoring. | ential distribution bas | sed on type I | (7+7) | | | - 5. a) Describe situations where random censoring occurs naturally. Obtain actuarial estimate of survival function and derive Greenwood's formula for the estimate of variance of the estimator. - b) Define associated random variables. If $X_1, X_2, ..., X_n$ are binary associated random variables then prove that $P\left[\coprod_{j=1}^n X_j = 1\right] \le \coprod_{j=1}^n P(X_j = 1)$. (7+7) - 6. a) Let $F(x) = \int F_{\alpha}(x) dG(\alpha)$ be a mixture of $\{F_{\alpha}\}$ with mixing distribution $G(\alpha)$. Prove that $^{\alpha}$ f each F_{α} is DFR then F is DFR. - b) Obtain the actuarial estimator of the survival function. Clearly state the assumption that you need to make. State Greenwood's formula for the variance of the estimator. - 7. a) Show that Kaplan-Meier estimator of survival function is the generalized likelihood estimator of the survival function. - b) Define structure function of a system. Obtain structure function of a system in terms of minimal path sets. (7+7) **SLR-BP - 495** | Seat | | |------|--| | No. | | ### M.Sc. (Part – II) (Semester – IV) Examination, 2015 STATISTICS (Paper – XIX) Operations Research (Elective – I) Day and Date: Thursday, 23-4-2015 Total Marks: 70 Time: 3.00 p.m. to 6.00 p.m. **Instructions**: 1) Attempt **five** questions. - 2) Q. No. 1 and Q. No. 2 are compulsory. - 3) Attempt any three from Q. No. 3 to Q. No. 7. - 4) Figures to the right indicate full marks. - 1. A) Select correct alternative: not true? 1) The given payoff matrix of a game is transposed. Which of the following is 5 - a) value of the game changes - b) saddle point of a game if exist, changes - c) player B has as many strategies as A had, and A has as many strategies as B - d) optimum strategies of both players does not change - 2) Quadratic programming is concerned with the NLPP of optimizing the quadratic objective function subject to _____ - a) linear inequality constraints - b) non-linear inequality constraints - c) non-linear equality constraints - d) no constraint - 3) Which of the following methods of solving a Quadratic programming problem is based on modified simplex method? - a) Wolfe's method - b) Beale's method - c) Frank-Wolfe method - d) Fletcher's method 5 4 - 4) Given an LPP to Maximize $Z = -5x_2$ subject to $x_1 + x_2 \le 1$, $0.5x_1 + 5x_2 \ge 0$ and $x_1 \ge 0$, $x_2 \ge 0$. Then we have _____ - a) no feasible solution - b) unbounded solution - c) unique optimum solution - d) multiple optimum solution - 5) Consider the LPP Minimize $Z = 3x_1 + 5x_2$ Subject to the constraints, $$x_1 + 2x_2 \le 4$$, $2x_1 + x_2 \ge 6$ and $x_1, x_2 \ge 0$ The problem represents a: a) Zero-one IPP b) Pure IPP c) Mixed IPP d) Non-IPP B) Fill in the blanks: 1) The basic solution to the system is called _____ if one or more of the basic variables vanish. 2) If all variables of an IPP are either 1 or 0, then problem is called ______ 3) If either the primal or the dual problem has an has unbounded objective function value then the other has _____ 4) Dual simplex method is applicable to those LPPs that start with infeasible but otherwise 5) A game in said to be determinable if _____ C) State whether the following statements are True or False: 1) A slack variable cannot be present in the optimum basis of an LPP. - 2) If an LPP has unbounded solution, the objective function will always be unbounded. - 3) The dual LPP must always be of minimization type. - 4) For a bounded primal problem, the dual would be infeasible. 2. a) Answer the following: - 6 - 1) Explain the use of artificial variables in linear programming. - 2) Define: - i) Convex polyhedron - ii) Convex function. - b) Write short notes on the following: - i) Two phase method of solving LPP. - ii) Primal-dual relationship. - 3. a) State and prove basic duality theorem. 8 8 b) Use dual simplex method to solve the following LPP: 6 Minimize $$Z = 10x_1 + 6x_2 + 2x_3$$ Subject to the constraints $$-x_1 + x_2 + x_3 \ge 1$$, $3x_1 + x_2 - x_3 \ge 2$ and $$x_1, x_2, x_3 \ge 0$$. - 4. a) Describe Gomory's method of solving an all integer LPP. 7 - b) Use Branch and Bound method to solve the following IPP: 7 Maximize $$Z = 7x_1 + 9x_2$$ subject to the constraints, $$-x_1 + 3x_2 \le 6$$, $7x_1 + x_2 \le 35$, $x_2 \le 7$ and x_1 , $x_2 \ge 0$ and are integers. 5. a) Derive the K-T conditions for an optimal solution to a QPP. 6 b) Solve the following LPP using Beale's method: Maximize $$Z = 2x_1 + 3x_2 - 2x_2^2$$ Subject to the constraints, $$x_1 + 4x_2 \le 4$$, $x_1 + x_2 \le 2$ and $$x_1, x_2 \ge 0$$. - 6. a) Explain Maximin and Minimax principle used in game theory. - 6 b) Solve the following game by LP technique. 8 7. a) Explain the theory of dominance in the solution of rectangular game. Illustrate with the following example. 8 b) Define the following: 6 - i) Saddle point - ii) Basic feasible solution - iii) Two person zero sum game. _____ | Seat | | |------|--| | No. | | ## M.Sc. (Part – II) (Semester – IV) Examination, 2015 STATISTICS (Paper – XX) (Elective – II) | | 3 | CI | aper – XX) (E
inical Trials | elective – II) | | | |---------------------------|--|--|---|--------------------|----------------|--| | • | ate : Satur
0 p.m. to 6. | day, 25-4-2015
00 p.m. | | | Max. Marks: 70 | | | Ins | tructions : | 1) Attempt five (2) Q. No. 1 and 3) Attempt any 4) Figures to the | Q. No. 2 are co
three from Q. N | No. 3 to Q. No. 7. | | | | 1. A) Se | lect most c | orrect alternative | : | | 5 | | | 1) | In clinical t | rials, 'Experiment | al Unit' means . | | | | | | a) Patient | | | | | | | b) Any healthy individual | | | | | | | | | c) Any sub | ject from target p | opulation | | | | | | d) All of the | e above | | | | | | 2) | | is the type of | stratified rando | mization. | | | | | a) Complete randomization | | | | | | | | b) Permuted block randomization | | | | | | | | c) Treatment adaptive randomization | | | | | | | | d) Response adaptive randomization | | | | | | | 3) | 3) Suppose that we wish to have a 95% assurance that the error in the estimated mean is less than 10% of the standard deviation. What will be the optimum sample size for comparison of two treatment means? | | | | | | | | a) 385 | b) 150 | c) 540 | d) 300 | | | | 4) | The period | between adminis | tration of refere | nce drug and test | drug is called | | | | a) Washou |
ut Period | b) Run-in F | Period | | | | | c) Therape | eutic Window | d) None of | the above | | | 2. | | 5) | 5) For a design, each patient treatment in random fashion, whereas for patient receives more than one treatment a | a design each | | | | |----|------|--|------------------------------------|-----|--|--| | | | a) parallel, crossover b) crossov | ver, parallel | | | | | | | c) parallel, parallel d) crossov | er, crossover | | | | | B) | Fil | Fill in the blanks : | | 5 | | | | | 1) | For n subjects and 2 treatments, the probability of imbalance in complete randomization is | | | | | | | 2) | 2) SOP stands for | | | | | | | 3) | 3) concurrent control can only b is negligible. | e used when the placebo effect | | | | | | 4) | 4) If the objective of the intended clinical trial is is better than a concurrent control in terms of then it is referred to as the tr | of its primary clinical endpoints, | | | | | | 5) | 5) The number of patients/volunteers involves | s in phase III | | | | | C) | Sta | State whether the following statements are tr o | ue or false : | 4 | | | | | 1) | An inadequate duration of treatment may the study drug. | provide an biased response of | | | | | | 2) |) We can estimate intra-subject variability in 'Parallel Design'. | | | | | | | 3) | 3) Statistical significance implies clinical sign | ificance. | | | | | | 4) | The Kolmogorov-Simrov test can be used to verify whether the distributions of both the test and reference active control are larger than those of the placebo. | | | | | | a) | an | What is the difference between Investigational New Drug application (IND and New Drug Application (NDA)? What are the types of INDs? Who sponsor for it? | | | | | | b) | Ex | Explain the following terms related with Clinic | al Trials : (8 | +6) | | | | | i) | i) Subject | | | | | | | ii) | ii) Clinical Endpoints | | | | | | | iii) | iii) Placebo. | | | | | - 3. a) What is population model and invoke population model? State the difference between them. - b) Explain the role of Bio-statistician in the planning and execution of clinical trials. Also state some sources of bias in clinical trials. (7+7) - 4. a) Describe all phases of clinical development in clinical trials. - b) What is randomization? Why randomization is needed in clinical trials? Give the types of randomization used in clinical trials. (7+7) - 5. a) For selecting an appropriate design for clinical trials, which issues must be considered? - b) Explain: Dose response concurrent controls. (6+8) - 6. a) i) What are the roots of administration of the drug? - ii) Discuss the objectives of repeated measures in clinical trials. - b) What is cross over design? Explain the different types of cross over design. (6+8) - 7. a) What is bio-equivalence? Explain the difference between average and variance bio-equivalence. - b) i) Explain the paired t-test. In which situation of analysis of clinical
trials paired t-test is useful? - ii) Explain 'Confidence Interval' useful in analysis of clinical trials with an example. (8+6)